Source code for arim.models.block_in_contact

"""
Model for solid block on which the probe is in direct contact

Imaging should work as expected.

The forward model is not finalised and is not experimentally validated. Buyer
beware.

Known issue :

- the model is not reciprocal (swapping the transmitter and the receiver gives
  different results)

Limits of the forward model:

- the scaling between the L and the T directivity of the elements is dubious
- material underneath is fluid
- do not model reflection against the backwall

See also :mod:`arim.models.model.block_in_immersion`

"""

import logging
from collections import OrderedDict, namedtuple
from itertools import product

import numpy as np

from .. import core as c
from .. import helpers, model, ray, signal
from ..ray import RayGeometry
from .helpers import make_views_from_paths

logger = logging.getLogger(__name__)


_RayWeightsCommon = namedtuple(
    "_RayWeightsCommon",
    ["numgridpoints", "wavelengths_in_block"],
)


def _init_ray_weights(path, frequency, probe_element_width, use_directivity):
    if path.rays is None:
        raise ValueError("Ray tracing must have been performed first.")

    block = path.materials[0]
    numgridpoints = len(path.interfaces[-1].points)

    if use_directivity and probe_element_width is None:
        raise ValueError("probe_element_width must be provided to compute directivity")

    if block.transverse_vel is None:
        wavelengths_in_block = dict(
            [(c.Mode.L, block.longitudinal_vel / frequency), (c.Mode.T, float("nan"))]
        )
    else:
        wavelengths_in_block = dict(
            [
                (c.Mode.L, block.longitudinal_vel / frequency),
                (c.Mode.T, block.transverse_vel / frequency),
            ]
        )

    return _RayWeightsCommon(numgridpoints, wavelengths_in_block)


[docs] def tx_ray_weights( path, ray_geometry, frequency, probe_element_width=None, use_directivity=True, use_beamspread=True, use_transrefl=True, use_attenuation=True, turn_off_invalid_rays=False, ): """ Coefficients Q_i(r, omega) in forward model. Parameters ---------- path : Path ray_geometry : arim.ray.RayGeometry frequency : float probe_element_width : float or None Mandatory if use_directivity is True use_directivity : bool Default True use_beamspread : bool Default True use_transrefl : bool Default: True use_attenuation : bool Default: True turn_off_invalid_rays : bool Default: False Returns ------- weights : ndarray Shape (numelements, numgridpoints) weights_dict : dict[str, ndarray] Components of the ray weights: beamspread, directivity, transmission-reflection, attenuation """ d = _init_ray_weights(path, frequency, probe_element_width, use_directivity) weights_dict = dict() one = np.ones((len(path.interfaces[0].points), d.numgridpoints), order="F") if use_directivity: if path.modes[0] is c.Mode.L: directivity_func = model.directivity_2d_rectangular_on_solid_l elif path.modes[0] is c.Mode.T: directivity_func = model.directivity_2d_rectangular_on_solid_t else: raise RuntimeError weights_dict["directivity"] = directivity_func( ray_geometry.conventional_out_angle(0), probe_element_width, d.wavelengths_in_block[c.Mode.L], d.wavelengths_in_block[c.Mode.T], ) else: weights_dict["directivity"] = one if use_transrefl and path.numlegs >= 2: weights_dict["transrefl"] = model.transmission_reflection_for_path( path, ray_geometry, unit="displacement" ) else: weights_dict["transrefl"] = one if use_beamspread: weights_dict["beamspread"] = model.beamspread_2d_for_path(ray_geometry) else: weights_dict["beamspread"] = one if use_attenuation: weights_dict["attenuation"] = model.material_attenuation_for_path( path, ray_geometry, frequency ) else: weights_dict["attenuation"] = one if turn_off_invalid_rays: weights_dict["invalid"] = (~path.rays._invalid_rays).astype(float) else: weights_dict["invalid"] = one weights = ( weights_dict["directivity"] * weights_dict["transrefl"] * weights_dict["beamspread"] * weights_dict["attenuation"] * weights_dict["invalid"] ) return weights, weights_dict
[docs] def rx_ray_weights( path, ray_geometry, frequency, probe_element_width=None, use_directivity=True, use_beamspread=True, use_transrefl=True, use_attenuation=True, turn_off_invalid_rays=False, ): """ Coefficients Q'_i(r, omega) in forward model. Parameters ---------- path : Path ray_geometry : arim.ray.RayGeometry frequency : float probe_element_width : float or None Mandatory if use_directivity is True use_directivity : bool Default True use_beamspread : bool Default True use_transrefl : bool Default: True use_attenuation : bool Default: True turn_off_invalid_rays : bool Default: False Returns ------- weights : ndarray Shape (numelements, numgridpoints) weights_dict : dict[str, ndarray] Components of the ray weights: beamspread, directivity, transmission-reflection, attenuation """ d = _init_ray_weights(path, frequency, probe_element_width, use_directivity) weights_dict = dict() one = np.ones((len(path.interfaces[0].points), d.numgridpoints), order="F") if use_directivity: if path.modes[0] is c.Mode.L: directivity_func = model.directivity_2d_rectangular_on_solid_l elif path.modes[0] is c.Mode.T: directivity_func = model.directivity_2d_rectangular_on_solid_t else: raise RuntimeError weights_dict["directivity"] = directivity_func( ray_geometry.conventional_out_angle(0), probe_element_width, d.wavelengths_in_block[c.Mode.L], d.wavelengths_in_block[c.Mode.T], ) else: weights_dict["directivity"] = one if use_transrefl and path.numlegs >= 2: weights_dict["transrefl"] = model.reverse_transmission_reflection_for_path( path, ray_geometry, unit="displacement" ) else: weights_dict["transrefl"] = one if use_beamspread: weights_dict["beamspread"] = model.reverse_beamspread_2d_for_path(ray_geometry) else: weights_dict["beamspread"] = one if use_attenuation: weights_dict["attenuation"] = model.material_attenuation_for_path( path, ray_geometry, frequency ) else: weights_dict["attenuation"] = one if turn_off_invalid_rays: weights_dict["invalid"] = (~path.rays._invalid_rays).astype(float) else: weights_dict["invalid"] = one # the coefficient accounts for the normalisation convention of the scattering in Bristol's literature scat_normalisation = np.sqrt(d.wavelengths_in_block[path.modes[-1]]) weights = ( weights_dict["directivity"] * weights_dict["transrefl"] * weights_dict["beamspread"] * weights_dict["attenuation"] * weights_dict["invalid"] ) # if path.modes[-1] is c.Mode.L: # reception_coeff = d.wavelengths_in_block[c.Mode.L]**1.5 # elif path.modes[-1] is c.Mode.T: # reception_coeff = -d.wavelengths_in_block[c.Mode.T]**1.5 # else: # raise RuntimeError # weights *= scat_normalisation * reception_coeff weights *= scat_normalisation return weights, weights_dict
def _make_backwall_refl_interface(backwall, under_material): if under_material is not None: backwall_refl = c.Interface( *backwall, "solid_fluid", "reflection", reflection_against=under_material, are_normals_on_inc_rays_side=False, are_normals_on_out_rays_side=False, ) else: backwall_refl = c.Interface( *backwall, are_normals_on_inc_rays_side=False, are_normals_on_out_rays_side=False, ) return backwall_refl
[docs] def backwall_paths( block_material, probe_oriented_points, backwall, under_material=None ): """ Make backwall paths LL, LT, TL, TT Probe -> block -> backwall > block -> probe Parameters ---------- block_material : Material probe_oriented_points : OrientedPoints backwall: OrientedPoints under_material : Material or None Returns ------- OrderedDict of Path Keys: LL, LT, TL, TT """ probe_start = c.Interface(*probe_oriented_points, are_normals_on_out_rays_side=True) backwall_refl = _make_backwall_refl_interface(backwall, under_material) probe_end = c.Interface(*probe_oriented_points, are_normals_on_inc_rays_side=True) paths = OrderedDict() for mode1 in (c.Mode.L, c.Mode.T): for mode2 in (c.Mode.L, c.Mode.T): key = mode1.key() + mode2.key() paths[key] = c.Path( interfaces=( probe_start, backwall_refl, probe_end, ), materials=( block_material, block_material, ), modes=(mode1, mode2), name="Backwall " + key, ) return paths
[docs] def ray_weights_for_wall( path, frequency, probe_element_width=None, use_directivity=True, use_beamspread=True, use_transrefl=True, use_attenuation=True, turn_off_invalid_rays=False, walls=None, ): """ Compute model coefficients for wall echoes. Parameters ---------- path frequency probe_element_width use_directivity use_beamspread use_transrefl use_attenuation turn_off_invalid_rays walls Returns ------- weights : ndarray Shape (numelements, numelements) weights_dict : dict[str, ndarray] Components of the ray weights: beamspread, directivity, transmission-reflection, attenuation """ # perform ray tracing if needed if path.rays is None: ray.ray_tracing_for_paths( [path], walls=walls, turn_off_invalid_rays=turn_off_invalid_rays ) ray_geometry = RayGeometry.from_path(path) d = _init_ray_weights(path, frequency, probe_element_width, use_directivity) weights_dict = dict() one = np.ones((len(path.interfaces[0].points), d.numgridpoints), order="F") if use_directivity: if path.modes[0] is c.Mode.L: directivity_func_tx = model.directivity_2d_rectangular_on_solid_l elif path.modes[0] is c.Mode.T: directivity_func_tx = model.directivity_2d_rectangular_on_solid_t if path.modes[-1] is c.Mode.L: directivity_func_rx = model.directivity_2d_rectangular_on_solid_l elif path.modes[-1] is c.Mode.T: directivity_func_rx = model.directivity_2d_rectangular_on_solid_t directivity_tx = directivity_func_tx( ray_geometry.conventional_out_angle(0), probe_element_width, d.wavelengths_in_block[c.Mode.L], d.wavelengths_in_block[c.Mode.T], ) directivity_rx = directivity_func_rx( ray_geometry.conventional_inc_angle(-1), probe_element_width, d.wavelengths_in_block[c.Mode.L], d.wavelengths_in_block[c.Mode.T], ) weights_dict["directivity"] = directivity_tx * directivity_rx else: weights_dict["directivity"] = one if use_transrefl: weights_dict["transrefl"] = model.transmission_reflection_for_path( path, ray_geometry, unit="displacement" ) else: weights_dict["transrefl"] = one if use_beamspread: weights_dict["beamspread"] = model.beamspread_2d_for_path(ray_geometry) else: weights_dict["beamspread"] = one if use_attenuation: weights_dict["attenuation"] = model.material_attenuation_for_path( path, ray_geometry, frequency ) else: weights_dict["attenuation"] = one if turn_off_invalid_rays: weights_dict["invalid"] = (~path.rays._invalid_rays).astype(float) else: weights_dict["invalid"] = one weights = ( weights_dict["directivity"] * weights_dict["transrefl"] * weights_dict["beamspread"] * weights_dict["attenuation"] * weights_dict["invalid"] ) return weights, weights_dict
[docs] def make_interfaces( probe_oriented_points, grid_oriented_points, reflecting_walls=None, under_material=None, ): """ Construct interfaces for the case of a solid block in contact with the probe. The interfaces are for rays starting from the probe and arriving in the grid. Additional walls can be included to allow reflections. Assumes that walls are provided in the order that reflection is expected (i.e. for 2 reflections from the backwall and then the frontwall, then walls should contain them in this order). Assumes all that walls have orientation facing into the solid. Parameters ---------- probe_oriented_points : OrientedPoints grid_oriented_points: OrientedPoints reflecting_walls: OrderedDict[str, OrientedPoints] or None under_material : Material or None Returns ------- interface_dict : dict[Interface] Keys: probe, grid, wall_name_1 (optional), ... """ interface_dict = OrderedDict() interface_dict["probe"] = c.Interface( *probe_oriented_points, are_normals_on_out_rays_side=True ) interface_dict["grid"] = c.Interface( *grid_oriented_points, are_normals_on_inc_rays_side=True ) if reflecting_walls is not None: for name, wall in reflecting_walls.items(): name = name.lower() + "_refl" if name != "frontwall" and under_material is not None: kind = "solid_fluid" transmission_reflection = "reflection" else: kind = None transmission_reflection = None interface_dict[name] = c.Interface( *wall, kind, transmission_reflection, are_normals_on_inc_rays_side=True, are_normals_on_out_rays_side=True, reflection_against=under_material, ) return interface_dict
[docs] def make_paths(block_material, interface_dict, max_number_of_reflection=0): """ Creates a dictionary a Paths for the block-in-contact model. Paths are returned in transmit convention: for the path XY, X is the mode before reflection against the backwall and Y is the mode after reflection. The path XY in transmit convention is the path YX in receive convention. Parameters ---------- block_material : Material interface_dict : dict[Interface] Use ``make_interfaces()`` to create max_number_of_reflection : int Default: 0 Returns ------- paths : OrderedDict """ if max_number_of_reflection > 2: raise NotImplementedError if max_number_of_reflection < 0: raise ValueError paths = OrderedDict() probe = interface_dict["probe"] grid = interface_dict["grid"] wall_dict = OrderedDict( (key, value) for key, value in interface_dict.items() if key not in ["probe", "grid"] ) wall_names = list(wall_dict.keys()) if (max_number_of_reflection > 0 and len(wall_names) == 0) or ( max_number_of_reflection > 1 and len(wall_names) < 2 ): raise ValueError("Not enough walls to reflect from.") mode_names = ("L", "T") modes = (c.Mode.longitudinal, c.Mode.transverse) for no_reflections in range(max_number_of_reflection + 1): # For this number of reflections, make all the combinations of paths. path_idxs_up_to_refl = list(product(range(2), repeat=no_reflections + 1)) for path_idxs in path_idxs_up_to_refl: # For each path with this number of reflections. path_name = "" path_modes = [] path_interfaces = [probe] path_materials = [] for i, mode in enumerate(path_idxs): if i == 0: path_name += mode_names[mode] else: # Have to settle on a naming convention. # Published work to date (~2023) joins wave modes and assumes a constant wall (typically back wall). # New `Path` method `longname` splices wall names into the mode names to indicate which wall was skipped from. Preserve simple naming convention for path dict keys. # If multiple paths with the same modes but different wall skips are needed, they will need to be stored in different dicts. Edit this string if this is inconvenient. path_name += "{}".format(mode_names[mode]) path_interfaces.append(wall_dict[wall_names[i - 1]]) path_modes.append(modes[mode]) path_materials.append(block_material) path_interfaces.append(grid) paths[path_name] = c.Path( interfaces=path_interfaces, materials=path_materials, modes=path_modes, name=path_name, ) return paths
[docs] def make_views( examination_object, probe_oriented_points, grid_oriented_points, walls_for_imaging=None, tfm_unique_only=False, ): """ Make views for the measurement model of a block in contact (scatterers response only). Parameters ---------- examination_object : arim.BlockInContact or arim.ExaminationObject probe_oriented_points : OrientedPoints grid_oriented_points : OrientedPoints Scatterers (for forward model) or grid (for imaging) walls_for_imaging : list[str] Keys of the walls in examination_object.walls which will be used to reflected from when imaging. Must be provided in the order that they are reflected from on the transmit path. The length of this list will be used as the max number of reflections. The default is None, i.e. no reflections. tfm_unique_only : bool Default False. If True, returns only the views that give *different* imaging results with TFM (AB-CD and DC-BA give the same imaging result). Returns ------- views: OrderedDict[Views] """ try: block_material = examination_object.block_material except AttributeError: # Plan B block_material = examination_object.material try: if walls_for_imaging is None: walls_for_imaging = [] if examination_object.walls is not None: walls = OrderedDict() for name in walls_for_imaging: walls[name] = examination_object.walls[name] else: walls = None except AttributeError: walls = None except KeyError: raise ValueError("Not enough walls to reflect from.") max_number_of_reflection = len(walls_for_imaging) try: under_material = examination_object.under_material except AttributeError: under_material = None interfaces = make_interfaces( probe_oriented_points, grid_oriented_points, reflecting_walls=walls, under_material=under_material, ) paths = make_paths(block_material, interfaces, max_number_of_reflection) return make_views_from_paths(paths, tfm_unique_only)
# ---------------- # From now on, almost perfect copy/paste of block_in_immersion. # To factorise!
[docs] def ray_weights_for_views( views, frequency, probe_element_width=None, use_directivity=True, use_beamspread=True, use_transrefl=True, use_attenuation=True, turn_off_invalid_rays=False, save_debug=False, ): """ Compute coefficients Q_i(r, omega) and Q'_j(r, omega) from the forward model for all views. NB: do not compute the scattering. Internally use :func:`tx_ray_weights` and :func:`rx_way_weights`. Parameters ---------- views : dict[Views] frequency : float probe_element_width : float use_directivity : bool use_beamspread : bool use_transrefl : bool use_attenuation : bool turn_off_invalid_rays : bool save_debug : bool Returns ------- RayWeights """ tx_ray_weights_dict = {} rx_ray_weights_dict = {} if save_debug: tx_ray_weights_debug_dict = {} rx_ray_weights_debug_dict = {} else: tx_ray_weights_debug_dict = None rx_ray_weights_debug_dict = None scat_angle_dict = {} all_tx_paths = {view.tx_path for view in views.values()} all_rx_paths = {view.rx_path for view in views.values()} all_paths = all_tx_paths | all_rx_paths model_options = dict( frequency=frequency, probe_element_width=probe_element_width, use_beamspread=use_beamspread, use_directivity=use_directivity, use_transrefl=use_transrefl, use_attenuation=use_attenuation, turn_off_invalid_rays=turn_off_invalid_rays, ) # By proceeding this way, geometrical computations can be reused for both # tx and rx path. for path in all_paths: ray_geometry = RayGeometry.from_path(path) scat_angle_dict[path] = ray_geometry.signed_inc_angle(-1) scat_angle_dict[path].flags.writeable = False if path in all_tx_paths: ray_weights, ray_weights_debug = tx_ray_weights( path, ray_geometry, **model_options ) ray_weights.flags.writeable = False tx_ray_weights_dict[path] = ray_weights if save_debug: tx_ray_weights_debug_dict[path] = ray_weights_debug del ray_weights, ray_weights_debug if path in all_rx_paths: ray_weights, ray_weights_debug = rx_ray_weights( path, ray_geometry, **model_options ) ray_weights.flags.writeable = False rx_ray_weights_dict[path] = ray_weights if save_debug: rx_ray_weights_debug_dict[path] = ray_weights_debug del ray_weights, ray_weights_debug return model.RayWeights( tx_ray_weights_dict, rx_ray_weights_dict, tx_ray_weights_debug_dict, rx_ray_weights_debug_dict, scat_angle_dict, )
[docs] def scat_unshifted_transfer_functions( views, tx, rx, freq_array, scat_obj, probe_element_width=None, use_directivity=True, use_beamspread=True, use_transrefl=True, use_attenuation=True, scat_angle=0.0, numangles_for_scat_precomp=0, first_nonzero_freq_idx=None, turn_off_invalid_rays=False, ): """ Compute unshifted transfer functions for scatterer echoes (multi-frequency model). Returns ``H_ij(omega) = Q_i(omega) Q'_j(omega) S(omega, theta_i, theta_j)`` Output spectra uses the *math* Fourier convention (not the acoustics one). Parameters ---------- views : Dict[Views] tx : ndarray Shape: (numtimetraces, ) rx : ndarray Shape: (numtimetraces, ) freq_array : ndarray or float Shape: (numfreq, ) scat_obj : arim.scat.Scattering2d probe_element_width : float or None use_directivity : bool use_beamspread : bool use_transrefl : bool use_attenuation : bool scat_angle : float numangles_for_scat_precomp : int Number of angles in [-pi, pi] for scattering precomputation. 0 to disable. See module documentation. first_nonzero_freq_idx : int or None Default: assumes first freq is zero, except if only one freq is given. turn_off_invalid_rays : bool Yields ------ partial_transfer_function_f : ndarray Shape: (numscatterers, numtimetraces, numfreq). Complex. Contribution for one view. delays : ndarray Shape: (numscatterers, numtimetraces). Float. Contribution for one view. See Also -------- :func:`arim.signal.timeshift_spectra` """ freq_array = np.atleast_1d(freq_array) numfreq = len(freq_array) if first_nonzero_freq_idx is None: if numfreq == 1: # assume the freq is nonzero first_nonzero_freq_idx = 0 else: # assume only the first freq is zero, as returned by fftfreq first_nonzero_freq_idx = 1 nonzero_freq_array = freq_array[first_nonzero_freq_idx:] # Precompute all ray weights ray_weights_allfreq = [] with helpers.timeit("Computation of ray weights", logger): for frequency in nonzero_freq_array: # logger.debug(f'ray weight freq={frequency}') ray_weights = ray_weights_for_views( views, frequency=frequency, probe_element_width=probe_element_width, use_beamspread=use_beamspread, use_directivity=use_directivity, use_transrefl=use_transrefl, use_attenuation=use_attenuation, turn_off_invalid_rays=turn_off_invalid_rays, ) ray_weights_allfreq.append(ray_weights) # (Pre)compute scattering from ..scat import ScatFromData scat_keys_to_compute = set(view.scat_key() for view in views.values()) # model_amplitudes_factory is way faster with the scattering is given as matrices instead of functions. # If matrices can be computed cheaply, it's worth it. if isinstance(scat_obj, ScatFromData): with helpers.timeit("Scattering", logger): scat_matrices = scat_obj.as_multi_freq_matrices( nonzero_freq_array, scat_obj.numangles, to_compute=scat_keys_to_compute ) elif numangles_for_scat_precomp > 0: with helpers.timeit("Scattering", logger): scat_matrices = scat_obj.as_multi_freq_matrices( nonzero_freq_array, numangles_for_scat_precomp, to_compute=scat_keys_to_compute, ) else: scat_matrices = None numtimetraces = len(tx) for view in views.values(): logger.info(f"Transfer function for scatterers in view {view.name}") numscatterers = view.tx_path.rays.times.shape[1] partial_transfer_function_f = np.zeros( (numscatterers, numtimetraces, numfreq), complex ) # shape: (numscatterers, numtimetraces) delays = np.ascontiguousarray( ( np.take(view.tx_path.rays.times, tx, axis=0) + np.take(view.rx_path.rays.times, rx, axis=0) ).T ) for freq_idx, frequency in enumerate(nonzero_freq_array): freq_idx2 = first_nonzero_freq_idx + freq_idx if scat_matrices: scattering = {key: mat[freq_idx] for key, mat in scat_matrices.items()} else: scattering = scat_obj.as_angles_funcs(frequency) ray_weights = ray_weights_allfreq[freq_idx] # compute Q_i Q'_j S_ij # shape: (numscatterers, numtimetraces, ) model_coefficients = model.model_amplitudes_factory( tx, rx, view, ray_weights, scattering, scat_angle=scat_angle )[...] np.conj(model_coefficients, out=model_coefficients) partial_transfer_function_f[..., freq_idx2] = model_coefficients yield partial_transfer_function_f, delays
[docs] def wall_unshifted_transfer_functions( wall_paths, tx, rx, freq_array, probe_element_width=None, use_directivity=True, use_beamspread=True, use_transrefl=True, use_attenuation=True, first_nonzero_freq_idx=None, turn_off_invalid_rays=False, walls=None, ): """Compute unshifted transfer functions for walls echoes. Output spectra uses the *math* Fourier convention (not the acoustics one). Parameters ---------- wall_paths : Dict[arim.Path] tx : ndarray Shape: (numtimetraces, ) rx : ndarray Shape: (numtimetraces, ) freq_array : ndarray or float Shape: (numfreq, ) probe_element_width : [type], optional [description] (the default is None, which [default_description]) probe_element_width : float or None use_directivity : bool use_beamspread : bool use_transrefl : bool use_attenuation : bool first_nonzero_freq_idx : int or None Default: assumes first freq is zero, except if only one freq is given. turn_off_invalid_rays : bool walls : OrderedDict[OrientedPoints] Yields ------ partial_transfer_function_f : ndarray Shape: (numtimetraces, numfreq). Complex. Contribution for one wall path. delays : ndarray Shape: (numtimetraces). Float. Contribution for wall path. """ freq_array = np.atleast_1d(freq_array) numfreq = len(freq_array) if first_nonzero_freq_idx is None: if numfreq == 1: # assume the freq is nonzero first_nonzero_freq_idx = 0 else: # assume only the first freq is zero, as returned by fftfreq first_nonzero_freq_idx = 1 nonzero_freq_array = freq_array[first_nonzero_freq_idx:] for pathname, path in wall_paths.items(): logger.info(f"Transfer function for wall {pathname}") partial_transfer_function_f = np.zeros((len(tx), len(freq_array)), complex) for freq_idx, frequency in enumerate(nonzero_freq_array): freq_idx2 = first_nonzero_freq_idx + freq_idx # shape: (numelements, numelements) ray_weights, _ = ray_weights_for_wall( path, frequency=frequency, probe_element_width=probe_element_width, use_beamspread=use_beamspread, use_directivity=use_directivity, use_transrefl=use_transrefl, use_attenuation=use_attenuation, turn_off_invalid_rays=turn_off_invalid_rays, walls=walls, ) # Fancy indexing: partial_transfer_function_f[:, freq_idx2] = ray_weights[tx, rx].conj() delays = path.rays.times[tx, rx] yield partial_transfer_function_f, delays
[docs] def singlefreq_scat_transfer_functions( views, tx, rx, frequency, freq_array, scat_obj, probe_element_width=None, use_directivity=True, use_beamspread=True, use_transrefl=True, use_attenuation=True, scat_angle=0.0, numangles_for_scat_precomp=0, turn_off_invalid_rays=False, ): """ Compute transfer functions for scatterer echoes (single-frequency model). Output spectra uses the *math* Fourier convention (not the acoustics one). Parameters ---------- views : Dict[Views] tx : ndarray Shape: (numtimetraces, ) rx : ndarray Shape: (numtimetraces, ) frequency : float freq_array : ndarray Shape: (numfreq, ) scat_obj : arim.scat.Scattering2d probe_element_width : float or None use_directivity : bool use_beamspread : bool use_transrefl : bool use_attenuation : bool scat_angle : float numangles_for_scat_precomp : int Number of angles in [-pi, pi] for scattering precomputation. 0 to disable. See module documentation. turn_off_invalid_rays : bool Yields ------ viewname : str Key of `views` partial_transfer_function_f : ndarray Shape: (numtimetraces, numfreq). Complex. Contribution for one view. Notes ----- Legacy function, superseeded by :func:`scat_unshifted_transfer_functions` and :func:`arim.signal.timeshift_spectra`. """ unshifted_tfs = scat_unshifted_transfer_functions( views, tx, rx, frequency, scat_obj, probe_element_width=probe_element_width, use_directivity=use_directivity, use_beamspread=use_beamspread, use_transrefl=use_transrefl, use_attenuation=use_attenuation, scat_angle=scat_angle, numangles_for_scat_precomp=numangles_for_scat_precomp, turn_off_invalid_rays=turn_off_invalid_rays, ) for viewname, (unshifted_tf, delays) in zip(views.keys(), unshifted_tfs): # shape (numscatterers, numtimetraces, numfreq) tf = signal.timeshift_spectra(unshifted_tf, delays, freq_array) # lazy tf.sum(axis=0): if tf.shape[0] == 1: tf = tf[0] else: tf = tf.sum(axis=0) yield viewname, tf
[docs] def singlefreq_wall_transfer_functions( wall_paths, tx, rx, frequency, freq_array, probe_element_width=None, use_directivity=True, use_beamspread=True, use_transrefl=True, use_attenuation=True, turn_off_invalid_rays=False, walls=None, ): """ Compute transfer functions for wall echoes (single-frequency model). Parameters ---------- wall_paths : Dict[Path] tx : ndarray Shape: (numtimetraces, ) rx : ndarray Shape: (numtimetraces, ) frequency : float Frequency at which the model runs. freq_array : ndarray Shape: (numfreq, ). First freq is assumed to be zero. probe_element_width : float or None use_directivity : bool use_beamspread : bool use_transrefl : bool use_attenuation : bool turn_off_invalid_rays : bool walls : OrderedDict[OrientedPoints] Yields ------ pathname : str Key of `wall_paths` partial_transfer_function_f : ndarray Shape: (numtimetraces, numfreq). Complex. Contribution for one path. Notes ----- Legacy function, superseeded by :func:`wall_unshifted_transfer_functions` and :func:`arim.signal.timeshift_spectra`. """ unshifted_tfs = wall_unshifted_transfer_functions( wall_paths, tx, rx, frequency, probe_element_width=probe_element_width, use_directivity=use_directivity, use_beamspread=use_beamspread, use_transrefl=use_transrefl, use_attenuation=use_attenuation, turn_off_invalid_rays=turn_off_invalid_rays, walls=walls, ) for pathname, (unshifted_tf, delays) in zip(wall_paths.keys(), unshifted_tfs): tf = signal.timeshift_spectra(unshifted_tf, delays, freq_array) yield pathname, tf
[docs] def multifreq_scat_transfer_functions( views, tx, rx, freq_array, scat_obj, probe_element_width=None, use_directivity=True, use_beamspread=True, use_transrefl=True, use_attenuation=True, scat_angle=0.0, numangles_for_scat_precomp=0, turn_off_invalid_rays=False, ): """ Compute transfer functions for scatterer echoes (multi-frequency model). Output spectra uses the *math* Fourier convention (not the acoustics one). Parameters ---------- views : Dict[Views] tx : ndarray Shape: (numtimetraces, ) rx : ndarray Shape: (numtimetraces, ) freq_array : ndarray Shape: (numfreq, ) scat_obj : arim.scat.Scattering2d probe_element_width : float or None use_directivity : bool use_beamspread : bool use_transrefl : bool use_attenuation : bool scat_angle : float numangles_for_scat_precomp : int Number of angles in [-pi, pi] for scattering precomputation. 0 to disable. See module documentation. turn_off_invalid_rays : bool Yields ------ viewname : str Key of `views` partial_transfer_function_f : ndarray Shape: (numtimetraces, numfreq). Complex. Contribution for one view. Notes ----- Legacy function, superseeded by :func:`scat_unshifted_transfer_functions` and :func:`arim.signal.timeshift_spectra`. """ unshifted_tfs = scat_unshifted_transfer_functions( views, tx, rx, freq_array, scat_obj, probe_element_width=probe_element_width, use_directivity=use_directivity, use_beamspread=use_beamspread, use_transrefl=use_transrefl, use_attenuation=use_attenuation, scat_angle=scat_angle, numangles_for_scat_precomp=numangles_for_scat_precomp, turn_off_invalid_rays=turn_off_invalid_rays, ) for viewname, (unshifted_tf, delays) in zip(views.keys(), unshifted_tfs): # shape (numscatterers, numtimetraces, numfreq) tf = signal.timeshift_spectra(unshifted_tf, delays, freq_array) # lazy tf.sum(axis=0): if tf.shape[0] == 1: tf = tf[0] else: tf = tf.sum(axis=0) yield viewname, tf
[docs] def multifreq_wall_transfer_functions( wall_paths, tx, rx, freq_array, probe_element_width=None, use_directivity=True, use_beamspread=True, use_transrefl=True, use_attenuation=True, turn_off_invalid_rays=False, walls=None, ): """ Compute transfer functions for scatterer echoes (multi-frequency model). Parameters ---------- wall_paths : Dict[Path] tx : ndarray Shape: (numtimetraces, ) rx : ndarray Shape: (numtimetraces, ) freq_array : ndarray Shape: (numfreq, ). First freq is assumed to be zero. probe_element_width : float or None use_directivity : bool use_beamspread : bool use_transrefl : bool use_attenuation : bool turn_off_invalid_rays : bool walls : OrderedDict[OrientedPoints] Yields ------ pathname : str Key of `wall_paths` partial_transfer_function_f : ndarray Shape: (numtimetraces, numfreq). Complex. Contribution for one path. Notes ----- Legacy function, superseeded by :func:`wall_unshifted_transfer_functions` and :func:`arim.signal.timeshift_spectra`. """ unshifted_tfs = wall_unshifted_transfer_functions( wall_paths, tx, rx, freq_array, probe_element_width=probe_element_width, use_directivity=use_directivity, use_beamspread=use_beamspread, use_transrefl=use_transrefl, use_attenuation=use_attenuation, turn_off_invalid_rays=turn_off_invalid_rays, walls=walls, ) for pathname, (unshifted_tf, delays) in zip(wall_paths.keys(), unshifted_tfs): tf = signal.timeshift_spectra(unshifted_tf, delays, freq_array) yield pathname, tf